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ABSTRACT
We prove existence, uniqueness, and reqularity properties for a solution

u of the Bellman-Dirichlet eguation of dynamic programming:

u =0 on 3% ,
1 2 : . .
where L and L are two second order, uniformly elliptic operators. The

method of proof is to repose (1) as a variational inequality for the operator

1 -1 . 2 .
K = L) in L () and to invoke known existence theorems. For

s : ol =2 : S 3 2,a
sufficiently nice f and f we prove in addition that ue H (Q) N C (R)

i

(for some 0 < a<1l) and hence is a classical solution of (1).
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SIGNIFICANCE AND EXPLANATION

The behavior of certain dynamic systems can be modelled by an Tto stochastic
differential eguation (corresponding roughly to an ordinary differential
equation subject to random perturbations or “noise"). A central problem in
stochastic optimal control theory is to discover the best control (that is,
the optimal settings of certain parameters occurring in the Ito equation describ-
ing the system) so as to maximize some performance criterion. According to
certain formal reasoning, known in the literature as "Bellman's principle of
dynamic programming", the problem of determining the optimal control can be
converted into the problem of solving a certain nonlinear, elliptic type p.d.e.

In this paper we prove the existence of classical solutions to the
Bellman p.d.e. occurring in the case that the system has only two control

settings, but that the choice of control may change the "noise" affecting the
system. Our treatment of this last possibility represents the main advance

over previous work. We employ in our proofs the abstract theory of variational

inequalities in Hilbert space: the applicability of this theory to certain

\

has

other questions in control theory (to optimal stopping time prohl

been long known, and we have now discovered a new applicatior
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A VARIATIONAL INDQUALITY APPROACH TO THE BELLMAN-DIRTCHLET
EQUATION FOR TWO ELLIPTIC OPERATORS

* * % l 2)
H. Brezis ed) and I.. C. Evans ' )s

1. 1Introduction.

In this paper we make use of some variational inequality techniques to prove existence,
uniqueness, and regularity theorems for a solution of the Bellman-Dirichlet problem for

two operators:

(155

. { . n . 1 2 ;
Here Q 1is a bounded domain in R with a smooth boundary TI'; f and f are given

: 1 2 . ] S 2
functions; and L and L are linear, second order, uniformly elliptic operators of

the form

(12 2) Ljn al . (x)n 1 bi(x)u = pu (1 = X, 2)
Kj xkxj k Xy
(We employ the implicit summation convention throughout.)

Problem (1.1) arises as a very special casce of Kellman's cquation of dynamic
programming for the optimal control of a certain stochastic system. More precisely, let
wl(t) be a standard n-dimensional Brownian motion, and suppose that a(t) is a stechastic
process in some appropriate class of admissible controls. We wish to study the solution
x(t) of the Ito differential eguation
(1.3) ax(t) b{x(t), olt})de =+ alx(®), alt)ydult) .

Let x € 9 be the starting point and 1t the hitting time to [I'. For a given adnissible
control af(:), the payoff will be given by

1
ulx,al-)) = E_1f e "YE(x(t),alt)at] ,

* 0
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where £ and u > 0 are given (% is the discount factor). According to certain

heuristic reasoning, the opt ig_l_l» payoft

u(x) sup u(x,a(-))
)
should satisfy the Rellman-Dirichlot type differential equation: L .

sup U,,(.\',u)ux . b,(x,a)ux SHUN A G a0 =110 Nin g
(1.4) at A L iy 3 i
u = 0 en T .
1

. P ; ; :
In these equations the matrix a 5 0 0; and A 1is the set of actions, that is, the

set in which the admissible controls take values. Sec Fleming-Rishel [3, Chapter VI)
or Kushner [5, Chapter 1V] tor further discussion and for details of the formal derivation
of (1.4).

The equations (1.1) comprise a special case of (1.4) occurring when the set of
actions A consists of only two elements. Since, however, we include in td.3) the
possibility that o depends on «, we are allowing the choice of contr 1 possibly to

affect the "noit

in the system:; and so even the simpler problem (1.1) can be rather

badly nonlinear.

For the case ¢ = R, the general problem (1.4) has been studied by N. V. Krylov [4],

who proved under various responsible hypotheses the existence of a unigue solution ‘
20PN , crilovis ) : e - Soats

u € ‘Nl (R7), (2 < p < ®. Krylov's approach (as well as the subsequent investigation
oc ==

of Nisio [R#]) is quite complicated and depends heavily on some delicate estimates of
certain stochastic differential equations. Certain other results for the problem (1.4)
have been obtained by Pucci [9).

For the simpler case of only two opcrators, we present in this paper a variational

theorem.  And

inequality forimulation, which a)lows for an easy existence and uniquencs

3 : 1 2
in fact we prove that for sufficiently nice functions f and £, (1.1) has a cla.

ical
solution u, with Holder continuous sccond derivatives. This is perhaps somewhat
surprising, as it is well known that this much smoothness cannot be expected for the

solutions of more conventional varjational inequalities: see, for examnple, Brezis and

Kinderlehrer [2).

S—




The methods we use can be adapted to handle

parabolic operators. Also, it has been pointed out by P. L. Lions (to appear) that they

lead to a solution when I.l is elliy

tic and

- considered by Bensoussan and Lesourme.

The paper is organized this way .

inequality and thereby, under the assunption (1

In Section 2 we transform (1.1) into a variaticnal

1,2

’

the case where

is parabolic; such a problem has been

f

2

€ 1,2(32) ’

2 y . sie
ue H () N HO(Q). For Section 3 we assume in addition that

3 4 : ; ; :
then that uw e W (R). Classical regularity ie obtained in Section 4:

£, 2 ¢ wl'P(g (p > ny,

2,a
that uc C (1) for some 0 < q <

; We wish to thank Ray Rishel for

this subject.

1. The Appendix comprises a proof of Lemma 2.1.

several conversations (with the second author) about

fl

%

f

2

we prove using the estimates of DeGiorgi-Moser-Stampacchia

|
2
and L are
find a unique solution
l ol
€ H (), and show
if
E
i
3
¥
N il




2. Ixistence and uniquencss.
Throughout the paper we will make use of these standing assumptions about the
1 2

coefficients of the operators L and L7:

there exist two numbers © > 6 > 0 such that
2 i 2
X (S] i =
(2.1) ale|” < akj(h)ikéj < Ojg] (i =1,2)

for each x € Q and § = (51152....,Cn) ¢ R '

the coefficients are smooth functions, say
(2.2)

aij, bi e 2@ (Ked = 1,2,...,n;5 § = 1,2)

The main idea in the proof of Theorem 2.2 is to rewrite problem (1.1) as the variation
inequality (2.10), involving a certain bounded linear operator K (defined by (2.9)
below). To solve the variational inequality, we will need information about the monotonicity
properties of K; and this the following lemma will provide.
Lemma 2.1. Let Ll and L2 be two elliptic operators of the form (1.2), the coefficients
of which satisfy (2.1) and (2.2). Then there exist two constants C1 > 0 and CZ > O

depending only on and the coefficients of Ll and L2, such that if

(2.3) #2e

then

(2.4) “v||2? £ 1lv-?v ax
H™ () (1}

for all v e uz(u) n né(u).
The inequality is announced by Sololevsky in [10]; for the reader's convenience
we present a proof in the Appendix.
We are now ready to prove the existence and uniqueness assertion.
Theorem 2.2. Let L] and L2 be two elliptic operators of the form (1.2), the
coefficients of which satisfy (2.1) and (2.2).
1 2

If y 1is sufficiently large, then for each £, £° ¢ LZ(Q) there exists a unigue

2
ue H () N Hé(ﬂ) solving




(2.5) maxl riue £ 1 =0 a.e.in 8-
i=1,2

In addition, there is a constant C, depending only on Q and the coefficients of L

and Lz, such that

2
o e, e
L () L (Q)

1
(2.6) hall , < cdiel
H™(Q)
Proof. First we reduce problem (2.5) to the casc where fl = 0. Indeed choose
o 3 1 15 1
u€ H @) N HO(Q) to selve L'u = f and then set

(2.7) Vviu+u.

A simple calculation reveals that v satisfies

(2.8) max '{sz = f, L]v} =00 Ewle ah g
i=1,2

S 2

u

for f£ C ks -

{11}

L

I

2
Define a bounded linear operator K : (Q) - Lz(n) as follows. Pick any ¢ € L

and let v € H2(Q) n Hé(Q) solve le = ¢ in §; next set

Ly =il
2-9) K¢ S Liv = 1,2(L Yldi
K is monotone and coercive on LZ(Q); indeed
(K¢, ¢) 5 f sz-L]v dx > £~l[v”22 by Lemma 2.1
L [} 2 HT ()

= CI'¢|I22 for some c¢ > 0
L

In terms of the new unknown ¢, problem (2.5) now reads

(2.10) ¢ <0, K$ - f <0, d(kKp - f) =0 a.e. in 0 ;

that is, ¢ 1is the solution of a variational inequality in Lz(Q) associated with the
operator K and the convex set {y :AO). Existence and uniqueness of a solution

follow from standard results (see, for example Stampacchia [11]).

(2)

; 2 § :
Estimate (2.6) follows from (2.8), (2.9) (with ¢ = 0), and the standard L a priori

1 2
estimates for the operators L and L . L

Remark 2.3. For the purpose of proving regularity results it is also convenient to view

(2.10) as the multivalued equation

-5-




(2.11) K(&) + B(¢) 2 f

where B is the maximal monotone graph on R defined by

0 X < 0
B(x) = [0, =) x =0
¢ x > 0 . L]

Remark 2.4. Inequality (2.4) can be uscd to prove an existence and regularity theorem

for solutions of certain second order, uniformly elliptic equations in nondivergence form,

the coefficients of which are discontinuous. Consider the problem

4 - yu = f 1 )
akjuxkx . bk“xk Hu £ an
(2.12) J

u =0 en T

Suppose that the (possibly discontinuous) coefficients a,. can be decomposed into the
1]

form
1 2 :
13) a = a_, A VOINTE LRy = L2, e om)
k3 Tkife T g0 L o)
i 3 oA :
the dk'i' (i = 1,2) are smooth functions and Xe is the characteristic function of

2
EC Q. Let us derive an a priori H estimate f

me measurable subset for a solution

of (2.12). Set

l.lu ul,n + b. v = i (1= 1;2}) :
Kj XX Kk x

] ) 4
then for a.e. x

(I.]n(x) - fFx)) (!,?n(:-:) =S =70
since, by (2.12), at least one of the two terms is zero. We integrate this identity

over  and make some simple estimotes to obtain

1 2 | l'?

f L u-Lu dx ° f!:n{; 5
2 H™ (42)

C 2

(S a)nen?, .
L™ (R)
; : SeE e : ;
By Lemma 2.1 the left hand side is greater than or equal to C ,!U““(m (if y is
2

sufficiently large); thus

lll cRitill o L.
H () L7 ()

-~

5
]
i
.




An existence proof for a solution of (2.12) can now be carried out,

inequality and the continuation of parameter method.
Notice that problem (1.1) has the same form as (25 2N=(21113)

is not known beforehand, and in fact depends upon the solution u

wie

based on this a priori

, except that the set E

-
.




3 5
3. W estimates.
In this and the next scction we shall further exploit our variational inequality
. ; y 1 2
reformulation of (1.1) to derive, under stronger assumptions on f and f°, some more
regularity properties for u.
Theorem 3.1. Suppose, in addition to the other hypotheses of Theorem 2.2, that

2 3, .
fl, ) A Hl(iz). Then u € H (Q); and we have the estimate

1 2
(3.1) full s etfielf 4 Sy S
H™(Q) H (Q) H ()

: . 1
the constant C depending only on @ and the coefficients of I and L .
Proof. The proof consists of three parts:
A. Approximation of problem (2.11)
5 : : 3 ’
B. Derivation of interior H estimates
. 3 !
C. Derivation of boundary H estimates.

A. Approximation. According to (2.11), the function v defined by (2.7) satisfies

2 1
(3.2) Lw + B('wy » £ .
Since fl, 2',6 HI('_‘), we have f € H)(Q)(f z |.2J- fz), with the estimate
] ]u
(3.3) Nell ,  <ediell, <l
H () H () H (Q)

To avoid any calculations involving multivalued operators, let us now select a

sequence ;’ik of smooth functions on R such that
g (%) = 0 for X< 0y "BU)> O ;i
(3.4) & - e
G}_(.\:) SRS as k & o, T wp g b

We consider the approximate problems

3 2 2
{3.5) L 1 4 Bk(l. vk) = £ k = YpZsseeY 3

the unigue solvability of which in the class nz(Q) n n;(u) follows from rewriting (3.5)
as K(¢) + t’,k(:) = f and invoking standard monotone operator theory (see Brezis [1]) for

example) .

For simplicity of notation let us drop the subscript k until the end of the proof.

-f -




B. Il_\‘(_‘_r_i_o_r_._li estimates. Let

g(x + hoi) e )

ny B = h

L

. z ; 5 ; .th ; : .
denote the difference quotient of a function g in some fixed 1 coordinate direction

©
ei(l <1 < n). We now choose a CO(Q) cutoff function ¢, multiply equation (3.5) by

(Cz(l-lv) ) 0'< h < dist(supt z,1) ,
(h) R

and then change variables to obtain the expression

2ax + | 8t
Q

2 1 1 2 1 2
- » AT s ¥ ;¢ = L
(3.6) é o) PR (hy (B V) TTAx é £y T V) (g & ax

Since R is nondecreasing, the second term on the left han. side is nonnegative.

; 2 .
Furthermore, notice that the L~ norm of the difference

i i
) = i = 2
(L v) (h){’ (V(h)(‘) (i 1,2)
can be dominated by C[vl| 5 . Using these two observations, we now derive from (3.6)
H™ ()
the estimate
i B T2 & 2
[y ax <elivl?, e few E) v, lel®
Q H™(Q) H (Q) H™ (Q)

for

; = 2 P o
Since v € HT(Q) N HO(:J), we can make use of Lemma 2.1, and then choose € > 0 sufficiently

small, to obtain the inequality

-n2 i 2 2
Well®, <cdivii®, +llell®;, >
H™ () H™(Q) H (Q)
2
= ellEn
H o (Q)

In this expression the constant C depends on §{ and other known quantities, but not

on h. Thus

3
vie H (R') for each Q' € C€qQ ,

with the estimate

ae




< c@n el -
ni o ut )

3.7 vl

3
C. Boundary H estimites.
Consider now some portion I'' of the boundary, which - upon a smooth local change

of coordinates if necessary - we may assume to lie in the plane Ko 0, with

®

B * {|x| (R,xn) G} € g c {xn > 0}, for some R > 0. First of all we consider the
tangential difference quotients V(h) in the directions oi(] <d £n-1); ‘since v =.0
on  R%. v(h) 0 there also. Therefore if we choose a smooth cutoff function ¢
vanishing near [\(] = R, then

v = v (s
AT 1 ! 5 ;
is in HO(}(R); and so the considerations from before imply that

+
(3.8) Vo S e & H (BR,) (0i € 'R* < R) .

: 5 2. + .
Thus it remains only to show that vx s belongs to L (B_,); all the other third

R*
2 4 n'nn
derivatives of v are in I"4(BR') by (3:-8) .
Set
1 1
(3.9) w = ].lv = a  (x)v TN RS
nn XX

‘n'n

. A + 2 :
with (L v)” ¢ Hl(h‘ ) by (3.8). In terms of the new function w, (3.5) now reads

R'
(3.10) A(x)w + B(w) = g
for
2
‘a
¥ = 2B
b
a
nn
and
2
5 +
ﬂ‘-" eyt = it e e i (B, -
“hn

By hypotheses (2.1) and (2.2), A is a positive, bounded, and smooth function. Therefore

we (hix) + 8) g

1 > 4
belongs also to I (“}.p) and so by (3.11), vx < € H (BR,

_10_




The calculations in parts B and C preceding provide bounds, independent of k, for

3
the H (2) norm of the solutions Vi of the approximate problems (3.5). Standard
: <
convergence arguments now imply that the vk converge weakly in H (R) (and strongly

in Hz(ﬂ)) to the solution v of (3.2). Hence vV € H3(Q), and estimate (3.1) follows

easily from the cstimates on v, (3.3), and (2.7). L]

-11-




2o »

4. C estimates.
. . 1 2

We now prove that under somewhat stronger regularity assumptions on f and £
problem (1.1) has a S&x:‘}s‘:ic_.\_l_ solution u, with locally Holder continuous second
derivatives in Q.
Theorem 4.1. Assume, in addition to the other hypotheses of Theorem 2.2, that

2 1
fl, f €W 'P(Q) for some n < p < @,

Then the solution u of (1.1) has locally Holder continuous second derivatives in
Q; and for each Q' C C Q, there are constants 0 < a <1 and C, depending only on

" il 1 2
p, ', and the coefficients of L and L, such that

! 2
(@.1) ol 50 et o Y,
c (@®) W) W Q)

N ) 1 2 1L.p

Remark 4.2. In the case that f, f € W (2) for some 2 < p < n, then the proof
: o 20" 1 1 e
below is easily modified to show u ¢ W & (Q) ( TS '1} 5 Tt would be of interest
loc p* ) n
2

to discover whether f], g€ LP(Q) (2 <p <o

the weaker assumption

implies that

24P v 2 Co . ¢
u € w P(31) (or that f], f € L () implies u € wz'p(Q) for some Pp > n.)
. 1 2 © :
We do not know, even for f, f° € C (Q), whether the solution belongs to
3,p : 2,a :
W () for every p or to C () for all 0 < a < 1. Tt is easy to construct
5 2:1 3
examples for which u € C (), ad ¢ @). L]
: g 1P
Proof. As in the proof of Theorem 2.2 we reduce (1.1) to the form (2.8), with f € W !
and
3 = 1 2
(4.2) Well 5 o CERER 5 o0 EREE
w P w P w P
0 s
Set € = 20 (6 and © from hypothesis (2.1)). Then
(4.3) M = L2 - r].l
is a uniformly elliptic second order operator with smooth top order coefficients ;kl'

We may rewrite (2.8) as

(4.4) max{Mv + ('L]v - f,l,)v) =0 a.e. in

~12-




—

and then (4.4) becomes

wEMv - f ;

(4.6) max{w 4 cle, le) =0 a.e. in |,

or equivalently

(4.7) cle +w =0 a.e.in @

1t follows from (4.5) and Theorem 3.1 that w € Hl(ﬂ). Let us apply the operator M to

(4.7); the resulting expression makes sense in the space H‘I(Q):

(4.8)

The commutator

emlvy + met = 0

(4.9) pv = Mty - Lt v

contains terms involving at most third order derivatives of v. We substitute (4.9)

and (4.5) into (4.8) to obtain

(4.10) SIS (El 4 Dvl & Be =0 ,

Let us rewrite (4.10) as

(4.11) (a

- 1 -
re = + .
where i © 5%t lien

for gu € Lp(ﬂ) (p > n), and

R

o
where auB € L (Q). (Note that for

(bx can be

W) =B Xiioia¥
[w>0] X % [w>01]

Since € > 0 the coefficients
ellipticity conditien; the interior

apply to (4.11).

= +
i x T TRy By

= ) D> (a st)
laJ<a
[B}<2
s + +
exanple a term like b(x) (w )x = (bw )x = bx w
k k k

included in R2 by (4.5)).

ékl are bounded measurable and satisfy a uniform

estimates of DeGiorgi-Moser-Stampacchia therefore

-13-




*
Since v € H3(x2) by Theorem 3.1 it follows that Ve € lr2 () (1,9 = X,....n),
1 ) 1 3
where — = 2— - n (with the usuval modifications when n =1 o 2). We may therefore

apply Theorem 5.4 in Stampacchia [11) to equatien (4.11) to conclude that

2% x # f
we L (Rl) for any domain “1 CECRCHE

Then by equation (4.5) and the standard LY estimates,
D 2EK
v EwW Q2 N _C€Cn
( 2) 5 1’
2%%

s € L Y L8 = St e

and so Wit (,) (1] 1, n)
1)
Continuing this bootstrap procedure Xk = [(n/2] times, we arrive finally at a sub-

domain Q' € C Q on which w satisfies equation (4.11), the right hand side of which
5 g N

can be expressed as (g])X r g, € I ('), p > n. As such Theorem 6.2 in Stampacchia [11)
Paaa

implies that w is Holder continuous with some exponent 0 < A < 1 in any domain

" € € g*.

b I.p
Now since f € W ¥

= : 1 ,
(R) for p > n, £€ € (@), wifth % =2 -;) . Thus in the
domain Q", v solves according to (4.5) the elliptic equation
Mv = f + w ,
the right hand side of which is HOlder continuous with exponent « min(y,\).
3 ¢ ; ; U '
By the standard interior Schauder estimates therefore, v € C @) dfor QV'" € C Q%

and the argument above also provides the estimate

(4.12) vl <cw el

C.,Q(L’,“) w],p ¢

()
g ‘ k § = 2 =
Since the solution u of (1.1) is related to v by (2.7), where u € C 22 (),

inequality (4.1) is proved. L

~14=




5. Appendix: Proof of Lemma 2.1.

The following proof of inequality (2.4) is based on Lady¥cnskaja [6, §3) and
LadyZenskaja-Ural'ceva (7, p. 182).
Lemma 5.1. Let A = ((a.,.)), B= ((b..)), and C = ((c..)) be thrce real n x n
e ij ij ij
symmetric matrices. Suppose that A and B are nonnegative definite, each with smallest

eigenvalue greater than or equal to v > 0. Then

5 n
(5.1) a,.c..b e.. >v 2 c
.90 ik okl 91 — e ij
1) 1 J i,3=1 13
Proof. Consider first the case A = dia(a,.,...,a ), a.. > v; then the left hand side
R 11 nn ARIse=

of (3.1) reads

L
e bl e . e i
ailclk )kl(‘ll = aixv X cl] i
j=1
n -
= \'2 y (:;.
i,3=1

In the general case we note that the left hand side of (5.1) is the trace of the

5 . : o 5
matrix D = ACBC. Choose an orthogonal matrix E such that A' = EAE is diagonal. Then

tr(D) = tr(EpE )

trear e e Y epce ™)

-
8535%ik K151

L}

tr(aA'C'B'C'")

where B' r:m-;_], (2h E('B_l. By the first case
n n
2 2 2 g
tr(A'C'B'C') > v ) (e} )" =v ) Ceg .
i,3=1 M keget ™

v \ 3.3
Proof of Lemma 2.1. We may assume, with no loss of generality, that u¢€¢ C° (2, u =0

: ; : 1 2 :
on TI'. We investigate first the case that L and L have no lowest order term, that is,

i i )

a,_.u 4+ b v (A = 1.2y «
k

k) xkxj xk

(5.2) Ll =

Let T' T T be some given portion of the boundary, which-upon a change of coordinates if

necessary-we may assume to lie in the plane X = 0 (with QC (xn > 0}). Choose a
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smooth cutoff function g, 0 < & <1, such that C(x) = 0 for x near T\I''. Then
2 | 4
f LL]u-L‘u dx = ] Cai‘u‘ T dx
Q i R K1
(5.3)
2 ] 1 2
+ f K(a%,u‘ " Jiu aklux L hiu + biux bkux )dx :
Q G Rk W R g %
|
We transform the first term on the right by integrating by parts twice: |
1 ) 2
f ta : ai]ux J ax = f Laz.ux . ak]ux - dx
Q 5 x*1 g A% i
2
g ! (La}'a;l)x b= T (Lai'ail)x Y.x U s
Q DA R ) kS
+ gai.afl(ux KU M Tu o uon)ds
R R Xtk X1 2
here n = (n_,...,n ) 1is the outward unit normal. Call the integrand of the last term I.

1 n

Then the preceding calculation and (5.3) imply

1 2
(5.4) I La, . u o ailu dx < f .:Ll
e Sy %5%y 0

& 3

By Lemma 5.1, with A = ((«1]j'j)), B =

n

(5.5) vt ¥ " an
i, =1 Q

Furthermore, since u 0 on T, we

1

1(x) tha .

1)

for xe€ ', When 1 < @) £ =1,

two terms involving only normal differentiations cancel; this also happens for j = k = n,i

arbitrary. Thus

n=1

kit 5 y L[anj‘nn nnajn é dxj X

31

for xe I''. Since ¢ =0 on IwW*

2
il u dx + €

2
((a kl))' an
2
dx < f ta
%K, =
s iy 19
have
.2
a” u u -
N X. X, %
2 SR
u =0. I
% %X,
1)

i 1
1 &

we may therefore calculate
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n
X I u2 = dx + S— f |Vu|2dx = f 1 ds
i, 3=1 @ *i%j Q r

d C = ((ux )), we have

2 R

coas u

in kn x X X
ik n

n addition, for i = j =k = n the

2,1 a .2




I] I(x)dsl = ]f 1(x)dx"' | x' = (xl,...,xn_l)
B rt
n-1
- 1 .2
(5.6) = |;] u ) (c(an.ann -atlmaz,n])x ax'|
rl n j=l ] J j
2
d
<cC f u? ax < Cf (59) ds .
re % A
In view of (5.4)-(5.6) and the trace inequality
au)? 2 2

/ (ay) ds < € X f U o dx + C(¢€) f [vu]“ax ,

T i.9=k @ *573 Q
we have

n n
5 2
(5.7) v2 ) f Lu? dx « j LLlu‘Lzu dx 4 ¢ E f u2 dx + Cfe) / IVu[ dx
S X, X . X X,
i,3=1 @ 15 § i,3=1 @ i3 Q
Next we decompose [I' into the union of finitely many pieces T; (o =0 ceank),  each

of which can be mapped as above by a smooth change of coordinates into the plane xn = 0.

Let ¢, (1 =1,...,k) be a swooth partition of unity on §, with g, = 0 near r\r;.

We sum the finite number of inequalities (5.7) resulting from these choices of Z, and 4

then select € > 0 sufficiently small to derive the estimate

¥ 2 S S _ 2
(5.8) ) f . dx < C f LSy dx 4 € f |Vu| dx
951 & %13 Q Q

; ’ 1 i i
Finally, we assume the operators L have the form (1.2), and set Mu = Lu + ju.

Then

] Llu-Lzu dx = f M]u~M2u dx - ¥ f (u‘Mlu + u-Mzu)dx i u2 f u2dx
1] Q Q Q

n
2C Z f u2 L dx - C ! IVuIzdx = f (u'Mlu-+u-M2u)dx i u2 f uzdx
i=1 a9 %4 Q Q Q

by (5.8) (with M' replacing L'). Now

-u f My =y Ii a;]ux u, dx + p f uu_ (a:I) — b;uux dx
Q Q - T e M " k

> wo [ |vu|%ax - uc [ |ul|vulax ;
Q Q
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therefore

L 3 S 2
/ Lu-Ludx > ¢ 2 f G (hz -cn [ u2
Q ST X X, p
1,)=1 Q g Q

We complete the proof by choosing n > 0 sufficiently large.
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